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We propose a new space-time coding scheme designed to increase the tolerance of fiber-optic communications
systems to polarization dependent loss (PDL). A notable increase in the tolerable amount of average link PDL is
achieved without affecting the complexity of the overall optical communications link. Other advantages include
seamless integration with the broadly deployed blind equalization modules relying on the constant modulus
algorithm.
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Increasing the tolerance of coherent polarization mul-
tiplexed networks to polarization dependent loss (PDL)
has been recognized as an important problem in opti-
cal communications. Space-time coding [1] is a natural
approach, and the Golden and Silver codes that were
studied in this context so far [2, 3] were predicted to in-
crease the tolerable amount of PDL by approximately
2 dB (assuming standard PDL margin levels of 1 to 2
decibels). The main drawback of these codes, which were
designed for the wireless communications environment,
is the decoder’s complexity which notably increases the
overall complexity of the receiver. Another disadvantage
is incompatibility with blind equalizers based on the con-
stant modulus approach [4], which are now ubiquitously
deployed in fiber-communications.
In this Letter we consider a new space-time coding

scheme that increases the tolerable PDL of a fiber optic
system by approximately 1dB and with practically no
effect on the overall complexity. A convenient feature of
the proposed scheme is that the encoder can be imple-
mented optically by the use of a single birefringent delay
element. We do not argue that the optical implementa-
tion is preferable from a practical standpoint, but it is
useful for illustrating the inspiration for this code and
for understanding its principle of operation. Although
the performance of the proposed space-time-code is infe-
rior to that of the Silver or Golden codes, its advantage is
in the decoding simplicity and in the fact that it can be
readily combined with standard equalization techniques
with no effect on their complexity.
In order to explain the principle of operation we as-

sume the optical implementation of Fig. 1a, where a bire-
fringent element of differential group delay τ is aligned
such that its principle axes are at a 45 degrees angle
between the horizontal (H) and vertical (V) axes along
which the two data streams are modulated. The effect
of the birefringent delay element is conveniently repre-
sented in Stokes space, where the H and V polarizations
are mapped to the points ±Ŝ1. Transmission through
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Fig. 1. (a) The optical implementation contains a bire-
fringent element introducing a differential delay τ be-
tween the polarization axes at 45 and −45 degrees with
respect to H and V. (b) The digital implementation is
a space-time code. (c) The data transmitted over the H
and V polarizations is smeared over a large circle on the
Poincaré sphere, resulting in averaging out the effect of
PDL.

the birefringent delay element corresponds to frequency
dependent rotation about the axis Ŝ2 (see Fig. 1 c).
Thus the spectral content of the the H and V polarized
channels is smeared on a great circle of the Poincaré
sphere. Assuming that τ is large enough to ensure uni-
form smearing, the signal will always be equally affected
by the maximum and minimum attenuation axes of PDL
in the subsequent optical link.
The equivalence to digitally implemented space-time

coding is straightforward when noting that the signals
in the H and V polarizations immediately following the
birefringent delay element, are given by

EH(t) =
sH(t) + sV (t)

2
+

sH(t− τ) − sV (t− τ)

2
(1)

EV (t) =
sH(t) + sV (t)

2
−

sH(t− τ)− sV (t− τ)

2
, (2)
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where sH(t) and sV (t) represent the signals produced by
the two modulators. Naturally, if τ is equal to an integer
multiple of the symbol duration Ts, then the same fields
can be generated by precoding the digital data symbols
(see Fig. 1b). Thus, assuming τ = mTs, the data symbols
bH,k and bV,k launched in the k-th symbol duration into
the H and V polarized channels, respectively, are

bH,k =
aH,k + aV,k

2
+

aH,k−m − aV,k−m

2
(3)

bV,k =
aH,k + aV,k

2
−

aH,k−m − aV,k−m

2
, (4)

where aH,k and aV,k are the data symbols prior to pre-
coding. Equations (3-4) constitute a space-time trellis
code (STTC) [5] requiring appropriate trellis decoding
for maximum likelihood operation [6]. Such decoding is
fairly complex in optical communications rates and as
the present work is motivated by alleviating complexity,
we do not consider it here. Instead, taking advantage
of the comparatively moderate fading caused by PDL in
optical systems (the average PDL of a link rarely exceeds
few decibels), our proposed scheme relies on a very sim-
ple, albeit suboptimal decoding scheme. We assume that
the the receiver consists of a digital equalizer followed by
a fixed decoder implementing the relations

aH,k =
bH,k + bV,k

2
+

bH,k+m − bV,k+m

2
(5)

aV,k =
bH,k + bV,k

2
−

bH,k+m − bV,k+m

2
. (6)

which invert Eqs. (3-4). In the case of adaptive equal-
ization, the feedback to the equalizer comes from the
output of the fixed decoder, as indicated by the arrows
in Figs. 1a and 1b. In this configuration, the complexity
(i.e. number of taps) in the adaptive equalization block
is not affected by the delay introduced by the space-time
code.
In what follows we evaluate the performance of the

proposed scheme in the case of single-carrier quadrature
phase-shift-keying (QPSK) transmission using Nyquist
shaped pulses of rectangular bandwidth 1/Ts, with Ts

denoting the symbol duration. The metric that we use
for quantifying the PDL tolerance is the system SNR
margin that is required to ensure that the probability of
a system outage due to PDL remains lower than an out-
age probability of 4 × 10−5 (or is 20 minutes per year).
We evaluate the performance of the proposed scheme un-
der the assumption of a zero-forcing (ZF) receiver [7] and
validate the results in simulations of the constant modu-
lus algorithm (CMA), followed by a decision driven least
mean squares (DD-LMS) filter as proposed in [4]. The ZF
receiver is not optimal, as it simply inverts the transfer
matrix of the channel while ignoring the partly polar-
ized nature of the noise. Nonetheless, as we showed in
[7], its performance is very reasonable when practically
relevant values of PDL are assumed. Our choice of the
ZF receiver is driven mainly by its computational effi-
ciency, which allows us to simulate a very large number
of random system realizations.

In all of our simulations, the transmission link is as-
sumed to be linear and chromatic dispersion is assumed
to be perfectly compensated. In addition, we assume that
the PMD of the link is negligible, so that the received
signal is impaired only by PDL and by amplifier noise
(which is partly polarized due to the presence of PDL
[9]). The neglect of PMD is immaterial to our study since
with typically encountered PMD levels, its effect on PDL
tolerance is negligible (unless PMD is introduced inten-
tionally as in [10]). The link is simulated as in [9] with
10 statistically independent PDL sections, ensuring that
the overall PDL statistics is consistent with [11].

Fig. 2. (a) Required link margin as a function of the cod-
ing delay. The solid curves correspond to the proposed
scheme with a zero-forcing receiver and the stars indi-
cate the CMA receiver results. The CMA receiver was
only simulated in the case of integer values of τ/Ts due
to the long computation times associated with the algo-
rithm convergence. The dashed curves show the results
that would be obtained if instead of the space-time code
proposed here, PMD with average DGD equal to τ were
distributed along the link as in [10]. (b) The required
margin as a function of the mean PDL in the uncoded
case and with the proposed code with τ = Ts. The re-
sults of the Golden and Silver codes were copied from [3]
for reference.

The solid curves in Fig. 2a show the required PDL
margin as a function of the coding delay introduced by
the differential delay element shown in Fig. 1a. These
curves were obtained based on 106 random link realiza-
tions and under the assumption of a ZF receiver. The
dashed curves are shown for reference and they repre-
sent the PDL margin that would be required if instead
of the proposed scheme, random PMD with average dif-
ferential delay τ , were distributed randomly along the
link as considered in [10]. This result too was obtained
under the assumption of a ZF receiver. We will return to
the comparison between the dashed and the solid curves
in what follows. Due to the very long computation times
associated with the simulation of the CMA receiver, the
results corresponding to CMA were obtained only in the
case of integer τ/Ts values. These are shown by the stars
in Fig. 2b, which are very close to the solid curves in all
cases, thereby validating the ZF results. Figure 2a shows
the required margin as a function of the average PDL for
the uncoded system and with the proposed code imple-
mented with τ = Ts and ZF equalization. The results
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of the Golden and Silver codes (with optimal decoding)
were reproduced from [3] for comparison. The inferior-
ity of the proposed scheme is negligible when the mean
PDL is 1dB or lower and grows to approximately 1.5dB
for 3dB of average PDL. Although this is a notable dif-
ference, there is still approximately 1.5dB improvement
relative to the uncoded scheme in this case.
Focusing on the solid curves, the required PDL margin

is seen to reduce with the coding delay until it reaches
its minimum value when τ = Ts. Then it returns to the
same minimum value repeatedly when τ/Ts is an integer.
The reason for this behavior is that the assumption of
Nyquist-shaped pulses implies a rectangular spectrum,
which for integer τ/Ts values is distributed evenly on
a great circle of the Poincaré sphere. In this situation
the frequency averaged effect of PDL on the signal is
independent of the PDL vector’s orientation and opti-
mal averaging occurs. The averaging principle is illus-
trated in Fig. 3, where the cumulated probability of the
SNR reduction caused by the presence of PDL is plotted
for mean PDL values of 1 and 2 dB. The leftmost solid
curve represents the SNR distribution corresponding to
the polarization channel (H or V) that experiences the
largest PDL penalty. Similarly the rightmost solid curve
represents the SNR distribution seen by the best of the
two channels. The dashed curve between them shows the
distribution of the average SNR of the two polarization
channels. The diamonds and the circles show the SNR
distributions of the two polarization channels when the
proposed coding scheme is applied with τ = Ts, and the
overlap with the dashed curve demonstrates the excellent
averaging that takes place.

Fig. 3. The cumulated distribution of the SNR when
only the worst of the two polarization channels is trans-
mitted (leftmost curve), the best of the two channels is
transmitted (rightmost curve) and the cumulated dis-
tribution of the average SNR (middle dashed curve).
The dots on the middle curve represent the distribution
of the overall SNR when both channels are transmitted
and the proposed coding scheme is implemented with
a coding delay of one symbol. The fact that the circles
overlap with the middle curve indicate the perfect aver-
aging that takes place. This curve was produced under
the assumption of a ZF receiver.

We now return to the comparison between the cod-
ing scheme proposed here and the case represented by
the dashed curves in Fig. 2 where large values of PMD

are distributed along the link [10]. Although in both
cases the signal is manipulated by a unitary transfor-
mation that involves the introduction of a differential
group delay (DGD), the principles of operation are dis-
tinctly different. In the presence of PMD, the PDL vector
itself (both direction and modulus) becomes frequency
dependent and its correlation bandwidth is known to be
given by π/τ [12]. Therefore, achievement of effective
frequency averaging within the bandwidth of the infor-
mation carrying signal requires that τ is well in excess of
the symbol duration Ts. In the scheme that we propose
here, the differential delay element (in the equivalent op-
tical implementation of Fig. 1a) is placed before the link
and introduces no frequency dependence to the magni-
tude of the PDL. Instead, its only effect is to distribute
the data over a continuum of polarization states, thereby
introducing diversity. The thin dashed curves in Fig. 2a
show the required PDL margin in the case of the PMD-
based scheme of [10]. These curves reduce monotonically
and can be shown to intersect with the solid curves rep-
resenting the present scheme only when τ/Ts ≫ 1. Thus,
although the presence of PMD will eventually produce
better PDL tolerance than the proposed coding scheme,
it implies very large delays and hence the need for fairly
complex equalization.
To conclude we have introduced a space-time coding

scheme that increases the PDL tolerance of systems with
practically no complexity overhead. The benefit in terms
of the tolerable PDL is estimated to be in the vicinity of
1dB. This can be extracted from Fig. 2 by noting that
with τ = Ts the required PDL margin is similar to the
margin required with 1dB less of PDL without coding
(i.e. with τ = 0). An important advantage of the pro-
posed scheme is that it can be seamlessly integrated with
available equalization technology, including the ubiqui-
tous CMA-based blind equalized.
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